
Abstract:
Filesystems continue to be a major performance bottleneck for many applications across a variety of hard-
ware architectures. Most existing attempts to address this issue (e.g., PVFS), rely on system resources that 
are not typically tuned for any specifi c user application. Others rely on special hardware capabilities such as 
shared-memory. 

We have developed an MPI-based Parallel Asynchronous I/O (PAIO) software package that enables applica-
tions to balance compute and I/O resources directly. PAIO uses a queuing mechanism to stage the data, sent 
over in parallel from compute nodes, on the reserved I/O nodes. Because the bandwidth of the inter-proces-
sor network greatly exceeds that of the fi lesystem, signifi cant performance improvements can be achieved 
under a bursty I/O load provided suffi  cient memory is available for the I/O nodes. The results of PAIO for 
typical weather applications on an SGI Altix and other architectures are presented.

Goal: 
To develop an application-controlled, portable, high-performance I/O library to maximize computing effi  ciency.

Background: 
Many high-performance computing applications need to write simulation data to disks for analysis in a 
short turnaround time. Typically such an operation is constrained by the underlying fi lesystem. The desire 
for high-resolution simulations and the trend of rapidly increasing computational nodes further burden the 
fi lesystem. The low performance of typical fi lesystems forces compute nodes to idle for a signifi cant time 
while writing the data to disks. For example, the NASA Goddard Space Flight Center (GSFC) Cloud Model 
(Figure 1) requires 1,913 wall-clock seconds, ~46% of the total simulation time, to write twenty-three 3D 
single-fl oating-point arrays of 1024 x 1024 x 41 to one fi le on a disk of an HP AlphaServer SC45 in running 
a one-model-hour simulation using 256 CPUs during which six such writes occurred.
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Figure 1: NASA GSFC Cloud Model is capable of simulating the cloud formation process and providing physical input for glob-
al circulation models. The image is one snapshot at Lat 10.14 S x 61.91 W (Brazil) created in a simulation with 256 x 256 x 41 reso-
lution. The area covered is 64 km x 64 km with a maximum height of 22.437 km. The background is imposed with the Landsat satellite data. 
Image by James Williams (GST).

PAIO Technical Description: 
As illustrated in Figure 4, the process of writing data into a disk is decomposed as:
• Send data from a compute node to a corresponding I/O node
• Store the data in a queue 
• Pull the data out of the queue
• Write the data into disks 

In addition, a polling mechanism is used between Send–and Receive–operations to support a more fl exible 
mode of operation. Moreover, the code is written in MPI to ensure portability and Fortran 95 to provide a 
user-friendly interface. Finally sending data in parallel from multiple compute nodes to the corresponding 
I/O nodes is implemented to aggregate the bandwidth of the inter-processor network.

Results: 
We have performed a series of performance tests using our application-controlled PAIO for an output pattern 
typical of weather and climate applications. Namely, 10 single-precision arrays of 1440 x 720 x 70 (~290 MB 
per array) are written to a disk consecutively. A test run on the GSFC SGI Altix, which has unidirectional 
internal network bandwidth of 3.2 GB/s and 2 GB of memory per processor, shows that the speed of writing 
these arrays to a disk with a single processor is ~298 MB/s. By using PAIO, data is sent from a compute node 
(Process 0) to the I/O node (Process 5) at 590 MB/s. By eliminating unnecessary data copies, we further im-
proved the performance to ~735 MB/s, which is a 2.5X improvement over the direct disk performance. Since 
the total size of the 10 arrays exceeds the available memory on a single node of the HP AlphaServer SC45, 
we performed a smaller test with just eight arrays of slightly smaller size (~1.37 GB total) on that platform. 
With PAIO, we achieved ~121 MB/s, which is a 3X improvement over writing data directly to a disk. To 
further exploit inter-processor bandwidth, PAIO has the capability of using multiple I/O nodes to cache the 
data. In the above confi guration with eight arrays, we observe speedups of 1.7X and 2.3X by using two and 
three I/O processors, respectively.

Conclusion: 
The results clearly indicate that our application-controlled PAIO library is capable of considerably increas-
ing I/O performance.

Next Steps: 
• Investigate variations of communication strategies for sending data to the I/O nodes
• Enable use of netCDF to support common data format
• Enable use of MPI I/O to further optimize management of distributed data
• Use PAIO in production codes to measure real benefi t to the end user
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PVFS-1 Preliminary Examination: 
We have examined the performance of PVFS-1 using one storage node on the NASA Thunderhead cluster 
(Figure 2). The purpose of our experiment was to test the buff ering capability of the I/O nodes, not the disk 
performance. The test application written in Fortran was executed on one compute node. To bypass the 
limitation of local memory (i.e., 1 GB) on the compute node, the application writes 20 small 1D Fortran 
arrays to the I/O node.

As indicated in Figure 3, the buff ering capability does alleviate the I/O bottleneck on the Thunderhead clus-
ter. We observed that once the total data size reaches ~1.35 GB, which is 67.5 % of the memory on the I/O 
node (i.e., 2 GB), a sharp decease in write performance occurs: from ~72 to ~55 MB/s. We conjecture that 
the performance drops precipitously at the point where the data volume exceeds the available buff er cache.

Approach: 
• Move data out of compute nodes to I/O nodes via inter-processor network

Harness the bandwidth of the inter-processor network, which greatly exceeds that of the fi lesystem
• Allow a user to determine when to send the data which to I/O nodes and when to fl ush the data into the disks

Balance the bandwidth of the inter-processor network, the number of I/O nodes, the memory size of the 
I/O node, and the disk speed

• Use queuing mechanism to optimize the amount of data in I/O nodes
Cache data according to available memory in I/O nodes
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Figure 2: The schematic of PVFS-1 confi guration on the NASA Thunderhead cluster.

Figure 3: The throughput of PVFS-1 on the NASA Thunderhead cluster as a function of data size.

Figure 4: The system architecture of the application-controlled parallel asynchronous I/O.
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